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The deformation characteristics of a sheared granular layer during stick–
slip are studied from a meso-mechanical viewpoint, both in the absence and
in the presence of externally applied vibration. The ultimate goal is to
characterize the physics of dynamic earthquake triggering, where one
earthquake, i.e., slip on one fault, is triggered via the seismic waves radiated
by another spatially and temporally distant seismic event. Toward this goal,
we performed Discrete Element Method simulations of a two-dimensional
packing of disks, mimicking a mature geologic fault. These simulations
were used to investigate the affine and non-affine deformations inside the
granular layer and their spatial–temporal evolution across the stick–slip
cycle. The simulation results show that slip in general is accompanied by
the appearance of localized regions with high values of both affine and
non-affine deformations. These regions are temporally correlated and are
mainly concentrated in a shear zone at the interface between the granular
layer and the driving block. Dynamic triggering is found to initiate slip
when vibration is applied late in the stick–slip cycle, when the system is
close to a critical state. It is also found that vibration itself introduces a
large amount of affine and non-affine strains, which leads to the initiation
of slip at lower shear stress than an equivalent slip event without vibration.

Keywords: granular media; affine and non-affine deformations; dynamic
earthquake triggering; stick–slip instability

1. Introduction

The passage of seismic waves radiated by one earthquake source can trigger slip on
faults far away from that source [1]. This phenomenon is termed dynamic earthquake
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triggering [2] and is widespread [3]. It may be that about 50% or more of earthquakes
are dynamically triggered by seismic waves [4]. Observations show that triggering
earthquakes causes an increase in seismicity rate during a long temporal interval
after their occurrence and over distances much larger than the length-scale of the
originating fault [5,6].

The physical mechanism responsible for dynamic triggering remains a mystery.
It is clear that it may differ significantly from the simplest version of the Coulomb
failure model used to explain earthquake nucleation and static triggering (aftershock
nucleation) [2,7]. According to this model, an earthquake occurs when tectonic
stresses exceed a geologic fault’s frictional rock strength. The result is either the
formation of a new fault or frictional slip along an existing one. In either case, the
critical tectonic stresses have values that are orders of magnitude larger than those of
seismic waves radiated by earthquakes far away in space and time. Even though,
according to the Coulomb failure model, small dynamic stresses can trigger
immediate slip on faults that are already close to failure [8,9], it remains to be
explained why a significant part of the dynamic earthquake triggering phenomenol-
ogy involves delayed triggering, i.e., triggering slip much later in time (days, weeks
and even months) compared with the seismic wave passage time [5,10], indicating
that other mechanisms, more complex than those described in the simplest version of
the Coulomb failure model, are at play [11,12].

To date, insight into the physics of dynamic earthquake triggering has been
addressed considering the case of frictional sliding on a fault. Frictional slip leads to
(1) the formation of granular fault gouge, due to the wear of the fault’s interfacial
surfaces, and to (2) cycles of successive earthquakes (slip/stress drops), as a result of
steady motion across the fault gouge [7]. It has been hypothesized that granular
gouge in mature faults may play a key role in the physical mechanism of dynamic
earthquake triggering [8,13]. This hypothesis has been based upon the laboratory
scale evidence that mechanical vibrations can change the mechanical behaviour and
frictional properties of granular packings, especially of sheared granular layers, in
some cases even inducing a transition from a solid-like behaviour to a transient,
fluid-like one, that could explain how small dynamic strains could trigger abrupt slip
on a fault [14–19].

In the search for validation of the hypothesis about the prominent role of
granular friction in dynamic earthquake triggering, Johnson et al. applied transient
sound vibration to sheared granular layers and found evidence of triggered slip
events [13]. They used a double-direct shear setup developed by Marone et al. [20,21].
This apparatus is capable of manipulating sheared granular layers in a wide spectrum
of dynamic regimes, including continuous sliding, intermittent and quasi-periodic
stick–slips [15,22,23]. Stick–slip dynamics of laboratory sheared granular layers is a
small-scale and simplified version of what happens in a sequence of earthquakes
along a fault. A ‘slip event’ is the equivalent of an earthquake while the following
‘stick’ period resembles the inter-seismic period of strain energy accumulation
[24–26]. Recent results obtained with the double-direct shear setup of Marone et al.
and with other ones [27,28] have clearly confirmed the hypothesis that granular
layers play a key role in controlling the characteristics of slip events. However, an
entire class of questions remains open, i.e., what are the granular mechanics
origins of the susceptibility of stick–slipping, sheared layers to be driven into their
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pseudo-fluid dynamic phase when an external vibration is applied to their
boundaries? Indeed, the behaviour of the granular layer depends upon its
microscopic and mesoscopic scale properties. By mesoscopic scale we mean a spatial
scale equivalent to the size of clusters made of 10–20 particles. A number of these
properties cannot be measured using most of the currently available experimental
configurations. On the contrary, numerical simulations of sheared granular layers
with Discrete Element Method (DEM)-like approaches allow for characterizing the
evolution of the granular dynamics underlying the macroscopic behaviour. Thus
they can provide data and information complementary to those obtained in
laboratory investigations and they can help with answering the basic questions about
the granular mechanics origins of dynamic earthquake triggering.

In a recent study, we proposed a 2D DEM model of a granular layer sheared by
deformable, thick blocks mimicking geologic fault rocks. With this model, we
investigated the role of AC vibration applied at the boundaries of the deformable
blocks in triggering slip events. We performed 2D DEM simulations both with
(perturbed simulation runs) and without vibration (reference runs) to explore how
vibration affects the particle-scale dynamics of slip [29]. The analysis of the patterns
of particle-scale displacements revealed the development of highly localized spatially
heterogeneous (non-affine) deformations [30,31].

Deformations (and the respective strain tensor field) inside sheared granular
layers can in general be described, at a mesoscopic scale, as consisting of the
superposition of two components: a locally uniform strain, called affine, and a
residual part associated with highly inhomogeneous and irreversible particle
displacements, which we call non-affine. The first type of strain component comes
from the usual continuum mechanics description of materials when ignoring their
inhomogeneous nature at different scales. According to this description, a material
undergoes uniform deformation when subject to uniform loading at the boundaries.
The corresponding deformation can be easily described purely by an affine
geometrical transformation, resulting from the combination of four other basic
geometrical transformations (translation, rotation, shear and scaling). However,
since the actual structure of any material is characterized by different levels of
inhomogeneities and discontinuities at different scales, even in the presence of
uniform boundary conditions the actual deformation is always spatially fluctuating
(non-affine), with different degrees of fluctuations at different scales. Our previous
investigation suggested that the development of non-affine deformations may be a
key process in dynamic triggering of slip events. In this study, we further extend that
analysis, looking at not only non-affine deformations but at the overall components
of the mesoscopic scale strain field and at its spatial–temporal evolution during
stick–slip dynamics, both in the presence and in the absence of externally applied AC
vibration.

2. Simulation approach

Each variable in our 2D DEM model is a-dimensional, expressed in terms of the
following basic dimensional units: L0¼ 150 mm, t0¼ 1 s and M0¼ 1 kg, for length,
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time and mass, respectively. L0 represents the largest particle radius within the
overall model.

The 2D DEM model consists of three main sets of particles, represented in
Figure 1a: a top driving block, a mirroring substrate block and a gouge layer. The
top driving block is used to confine and shear the simulated granular gouge. This
block is modelled as a system of spherical, bonded particles (top of Figure 1a) and is
made of two distinct layers. The top layer consists of particles with radius L0, driven
at constant speed VX,0¼ 4 in the shear direction (X). The second layer is thicker and
consists of particles with radius distributed within the interval [0.3; 1.0]. Both the
uniform and the distributed size particles interact with each other via radial springs
[32,33]. This type of spring is formulated as an elastic Hookean spring:

Fr ¼ Kr " Dr ð1Þ

where Fr is the radial force component and D r is the distance between their centres.
We notice that the choice here of linear elastic springs was motivated by

computational simplicity and evidence from previous studies that this type of elastic
bond already allows for capturing the most relevant mechanical features of both
regular and irregular lattices of bonded particles, including fracture phenomenology
[33–36]. In Equation (1), Kr¼ 2.9775 " 107 is the radial compressional/tensional
spring stiffness. Its value was chosen on the basis of a calibration procedure based
upon simulated unconfined compression tests [37]: Kr was adjusted in order to
achieve, for the particle assembly, a bulk Young modulus in typical ranges for rock
materials [13,38].

A mirroring substrate block (bottom of Figure 1a), constructed similarly to the
driving block, represents the second set of particles. Its bottom, a uniform layer of
particles with radius L0, is fixed in X but can be displaced in the Y-direction by a
transient AC perturbation.

The driving block and the substrate are elastic models representing both the
laboratory and the tectonic shear blocks. They are characterized by two important
features.

First, the Particle Size Distribution (PSD) for the second layer of the driving
block and the substrate, shown in Figure 1b, introduces surface roughness at the
boundary between the shearing blocks and the gouge layer. This roughness contains
a variety of spatial wavelengths and is distinct from the roughness obtained with a
regular lattice of particles with constant radius. The PSD is the result of the packing
algorithm adopted, which exploits a space-filling particle insertion method [37].
Surface roughness is known to be an important ingredient in modelling and
simulating granular stick–slip. Laboratory experiments have shown that shear of
granular layers made of smooth, spherical particles leads to unstable sliding,
including stick–slip dynamics, only in the presence of rough boundary
surfaces [23,39]. In addition, there is ample evidence that actual fault rocks
are characterized by surface roughness spanning orders of magnitude in
dimension [40–43].

The second feature of the driving block and substrate is the elastic deformability,
due to the system of bonds among the particles and their geometrical configuration.
This feature is important because it allows for dynamic interactions between the

4 M. Griffa et al.
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deformed granular gouge and the deformable elastic rocks confining it. These
interactions are the basis of earthquake physics. The deformability of the driving
block, sliding on top of a rough surface, allows for elastic energy storage/release
which is not possible in the case of rigid blocks. Models of spring–slider systems on
rough surfaces, such as those belonging to the family of the Burridge–Knopoff model
[44,45], usually do not account for the elasticity of the block. Despite its importance,
this feature has been included only in a few recently developed DEM models of
sheared fault gouge [38,46].

The gouge layer (centre of Figure 1a) consists of a set of spherical, unbonded
particles interacting with each other and with the driving block/substrate particles
via a repulsive Hookean force with radial and tangential components [32,33].

Granular layer

Substrate

Driving Block

X

Y

(a)

0.4 0.6 0.8 1
0

0.5

1

R′ [L0]

P
 (R

 ≤
 R

′ )

P
 (R

 ≤
 R

′ )
(b)

0.35 0.4 0.45 0.5 0.55
0

0.5

1
(c)

1.475 1.5 1.525 1.55

−5

0

5

u
y
[L

0
·1

03
]

(d)

Figure 1. (a) Visualization of a horizontal segment of the 2D DEM model composed of the
driving block (top), the granular layer (centre) and the substrate (bottom). Particles are
coloured differently in order to identify the different components of the model. A shear load
is applied in the X-direction, and a normal confining load is applied in the Y-direction.
(b) Cumulative Distribution Function (CDF) of the particle radius R, P(R%R0), for the
particle ensemble comprising the driving block, excluding the top layer particles (those with
constant radius L0). P(R%R0) represents the probability that the radius R, as a random
variable, assumes a value smaller than or equal to R0, given the particle ensemble as a
realization ensemble for that variable. (c) CDF of the particle radius R, P(R%R0), for the
particle ensemble comprising the granular layer. (d) Example of displacement imposed to the
bottom layer of the substrate and in the Y-direction (uy) as an AC vibration source at the
boundary of the system. The temporal law is a harmonic oscillation at frequency f0¼ 1 kHz
with amplitude modulations given by a Gaussian-like signal. Notice the small peak-to-peak
amplitude of this AC displacement, compared to the largest particle size, L0¼ 150mm, within
the system, uy,PP& 0.015 L0.
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The radial component has a spring stiffness Kr¼ 5.954 " 107. The tangential
component represents the frictional force. Its formulation follows the approach
proposed by Cundall et al. [47]. The friction parameters are Ks¼ 5.954 " 107 and
!s¼!d¼ 0.6, for the shear spring stiffness and the friction coefficients, respectively.
As for the Kr value of the bonded particles belonging either to the driving block or to
the substrate, the microscopic parameters of the unbonded particles were chosen on
the basis of a calibration aiming at making the granular layer achieve a Young
modulus in the same range as the driving block/substrate’s.

The granular layer particles are initially arranged using the same type of packing
algorithm described above [37], with radius ranging from 0.35 to 0.55, approximately
corresponding to the size range, [105; 150]mm, of the silica glass beads used as model
fault gouge in the experiments by Johnson et al. (see the ‘Methods’ section of Ref.
[13]). As a result of the packing algorithm and size range used, the PSD for the
granular gouge is quasi-uniform in the given range, Figure 1c.

Each particle within the system is subject to a damping force proportional to the
particle velocity vector. This viscous force is used to avoid the build up of kinetic
energy within the system due to its finite size in the Y-direction.

The overall model has length LX¼ 70 in X and approximately LY¼ 30 in Y.
Periodic boundary conditions are applied in X during each simulation, as the aspect
ratio used in the laboratory experiments by Johnson et al. [13] is much larger than we
can reasonably simulate.

In the Y-direction, the boundary conditions consist of a modified version of the
constant normal force/stress boundary condition adopted by Aharonov et al. [48].
A similar implementation was adopted by Capozza et al. in their study of the effects
of vibration on granular stick–slip [17].

Each simulation run consists first of a consolidation stage, 104 time steps long,
when no shear load is imposed. During this initial time interval, the granular layer is
compressed, displacing vertically both the top of the driving block and the bottom of
the substrate, until the applied normal load reaches a constant value of "n¼ 600
(&4MPa). The chosen value of "n was suggested by the experiments of Johnson
et al., where the normal confining load was also equal to 4MPa [13]. This
consolidation period results in an initial, transitory regime for the system’s thickness
in Y, during which it decreases approximately exponentially towards a steady state
value. This equilibrium value is achieved well before the end of the consolidation
stage. During the shear phase, the normal load is kept constant on the driving block
[29]. The shear load is imposed starting at the end of the consolidation stage, initially
with a linearly increasing speed until the desired value VX,0 is achieved (piecewise
linear ramp loading).

For the perturbed runs, i.e., in the presence of applied vibration, the additional
boundary conditions consist of imposing a displacement in Y for the bottom,
uniform layer of particles belonging to the substrate. These particles were displaced
in Y during a finite time interval according to the following temporal law,

uYðtÞ ¼A " Dt "
@f

@t
t, t0,T#, $ð Þ " cos !ðt' t0Þ ' %

2

! "#

'! " f t, t0,T#, $ð Þ " sin !ðt' t0Þ ' %
2

! "i
ð2Þ

6 M. Griffa et al.
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where

f t, t0,T#, $ð Þ ( 1

2
" tanh

t' t0

$

$ %
' tanh

t' ðt0 þ T#Þ
$

$ %# &
: ð3Þ

In both Equations (2) and (3), t¼m "Dt, 8m¼ 0, 1, . . . , is discretized time and Dt is
the simulation time step. Equation (2) represents a sinusoid with frequency
!¼ 2% " f0, with f0¼ 1 kHz, whose amplitude is modulated in time by a waveform
with a Gaussian-like shape, given by Equation (3). In Equation (2), t0 represents a
phase shift term for centring the temporal window of AC vibration at different times
during the stick–slip dynamics. $¼ 0.01 and T#¼ 0.02, in Equation (3), play
respectively the role of a rising/decaying time constant and width for the AC
displacement waveform. A¼ 0.01 in Equation (2) is the AC vibration maximum
amplitude. Figure 1d shows the AC displacement waveform applied during the time
interval [1.46;1.56].

The overall model is implemented using the open source Discrete Element
Method code ESyS-Particle, developed at and maintained by the Earth Systems
Science Computational Centre of the University of Queensland, Brisbane, Australia.
Newton’s equations of motion for the centre of mass and for the angle of rotation
about the centre of mass of each particle are solved respectively by a first-order,
explicit finite difference scheme and by a finite difference rotational leapfrog
algorithm [49]. The finite difference time step Dt¼ 25 " 10'6 is small enough to
guarantee numerical stability and to satisfy the sampling theorem for a vibration
signal with maximum frequency fmax¼ 2 " 105, which is approximately the
maximum sound frequency of vibration in the laboratory experiments by
Johnson et al. [13].

3. Affine and non-affine deformations

Different methods have been developed for defining and estimating affine and
non-affine strains at a mesoscopic scale, i.e., in the case of granular media, for
intermediate-sized clusters of particles. Tordesillas et al. have developed a local
measure of non-affine deformation at the scale of each particle and its first ring of
neighbours. This measure is based upon a coherent definition of local strain
and curvature according to the micropolar theory of continua [50]. The main
advantage of this measure is that it naturally accounts for particle-scale
rotations and is based upon a local micropolar strain definition whose volumetric
average is equal to the corresponding macroscopic strain experienced by the overall
assembly.

In this work we adopt a more phenomenological approach that allows us to
estimate a local amount of non-affine deformation and to calculate a best fit value
for the local affine strain tensor [30]. This measure of non-affine deformation
essentially depends only upon particle displacements and not on their single
rotations. In this approach, at any simulation time t we consider a small cluster of
particles surrounding a given one with position rc and the displacement of these
particles within the time interval [t; t0¼ tþ &t]. We call ri the relative position
of particle i in that cluster at time t, while with r0i we indicate the respective relative
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position at time t0. The positions are relative to the centre of mass of the cluster at the
corresponding time [51]. If the overall mechanical deformation of the cluster is
completely homogeneous, between time t and t0, then each particle i has, at time t0, a
relative position r0Ai given by a simple mathematical mapping (geometrical
transformation) from its position at time t, i.e., r0Ai ¼ Eðt, &t, rcÞri, where E(t, &t, rc)
is an affine transformation matrix for the cluster of particles around the one at
position rc, at time t. Inside the cluster region and considering only such
homogeneous deformation, the relative displacement of each particle, between
time t and t0, is given by uAi ¼ r0Ai ' ri ¼ ðEðt, &t, rcÞ ' 12Þri, where 12 is the identity
matrix of order two. The correspondent deformation matrix, hence the strain tensor,
that is obtained by partial derivatives of the components of the displacement vector
field, is then independent of the particle position ri, showing how an affine
transformation corresponds to a homogeneous strain.

The estimation of E(t, &t, rc), at each time t and for each particle, with position rc,
of a granular medium, can be obtained by formulating an optimization problem,
consisting of minimizing the least squares error function D2ðt, &t, rcÞ (P

i¼1,...,NðrcÞ r
0
i ' r0Ai

'' ''2, where N(rc) is the number of particles belonging to the cluster
centred in rc. The minimization is done with respect to the elements of E. In 2D, this
minimization problem can be solved analytically, as shown in Ref. [30]. Its solution
leads to a best fit of the actual, local deformation with an affine transformation
model and an estimate of the residual amount of non-affine deformation, given by
the corresponding minimum value of D2(t, & t, rc), which we call D2

minðt, &t, rcÞ. We
can thus associate to each particle of the granular assembly, at each time t, an affine
transformation matrix, Emin, and a scalar variable M (

ffiffiffiffiffiffiffiffiffiffi
D2

min

q
with the dimension of a

length, which represents the local amount of non-affine deformation. We choose the
clusters to consist of all the particles whose centres fall within a distance L¼ 2.2 from
the reference particle. This number was chosen in order to consider a cluster small
enough to provide enough spatial resolution to capture highly localized deforma-
tions, but, at the same time, large enough to consider a sufficiently representative
number of particles (about 20). The deformation time-scale &t was chosen as
&t¼ 10 "Dt, which is large enough to avoid being dominated by small-scale particle
fluctuations, yet small enough to resolve particle motions finer than the overall large-
scale flow.

Since the system is not in pure shear mode, each single cluster may rotate around
its centre of mass and the affine mapping matrix Emin is in general not symmetric.
Therefore, Emin is decomposed into a symmetric matrix, F, representing the
deformation due to the combination of shear and scaling, and an orthogonal matrix,
R', representing the rotation (in 2D) of the cluster by an angle ' (Emin¼R' "F). ' is
uniquely determined as we restrict'%/2% '%%/2. The conventional strain tensor
can thus be expressed as e(F' 12. In the analysis presented below, we have
adopted the two eigenvalues of e, (1 and (2, with (1* (2, and ' as monitoring
variables for characterizing the affine component of the deformation process. M is
used as a quantitative estimate of the mesoscopic, localized non-affine component.
We show in Section 4 detailed spatial–temporal distributions ofM, ', &(( (2' (1 and
!( ( ð(1 þ (2Þ=2, where &( and !( correspond to the affine deviatoric and volumetric
(eigen)strains, respectively.

8 M. Griffa et al.
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4. Results and discussion

4.1. Spatial distributions of deformations

In this study, we adopt the friction coefficient, !f, as a macroscopic variable
identifying the stick–slip dynamics of the granular layer. The friction coefficient is
the ratio of the total shear stress on the driving block, $, to the average normal
confining stress, "n. This average confining stress is kept constant on the driving
block during the simulation, hence an increase in !f corresponds to an increase in $.
We refer to periods of increase for !f as ‘stick’ phases, whereas periods of drop of !f

are called ‘slip phases’ or simply slip events.
Figure 2a shows the time series of !f for the reference run (black line) and for one

corresponding perturbed run (grey line). The time interval of AC vibration for this
perturbed run, I¼ [3.360; 3.460], is highlighted by the shaded area in the figure. We
notice that while here we report for brevity the results of our analyses for a single
stick–slip period from one reference run-perturbed run couple, qualitatively similar
results have been obtained when analysing other stick–slip periods from the same
couple of runs or from other couples of runs differing from the one used here only
for a distinct, random realization of the granular layer (see Appendix A). Figure 2b
shows the waveform of the AC displacement imposed at the lower boundary of the
substrate. This example shows that the application of AC vibration triggers slip (grey
line) sooner in time than in the corresponding case without AC vibration (black line).
The drop in !f for the dynamically triggered slip (grey line) is smaller than that of the
corresponding spontaneous slip (black line). The markers superimposed on the lines
in Figure 2a point to times at which the spatial maps of affine strains and non-affine
deformation are shown in Figures 3 and 4, for the reference run and the perturbed
run, respectively.

Figure 3 contains the spatial map of the non-affine deformation metric, M (first
row, insets (a)–(c)), of the affine deviatoric strain, &( (second row, insets (d)–(f)), of
the affine volumetric strain, !( (third row, insets (g)–(i)), and finally of the affine
rotation angle, 'r (fourth row, insets (j)–(l)). Spatial maps are shown at the three
selected time instants during the reference run (different columns, see the
corresponding markers in Figure 2a). As can be seen in Figures 3a, d, g and j, at
the initiation of slip there is almost no distinguishable deformation. This means that
the system is nearly jammed at this moment. Non-affine deformation increases after
the initiation of slip. Figure 3b shows the elevated values of non-affine deformation
within spatially localized regions at about half of the slip period. This is accompanied
by an increase of both the affine eigenstrains and the affine rotation angle almost at
the same spatial locations (Figures 3e, h and k). These spatial–temporal patterns
suggest the development of a shear zone as described by the Shear Transformation
Zone (STZ) theory [52,53].

Affine and non-affine deformations originate at the interface between the
granular gouge and the upper roughness layer of the driving block. However, as
the system evolves towards the end of the slip event, they develop across almost the
whole granular layer. Still, their maximum values are localized along the upper
roughness layer throughout the slip period (Figures 3c, f, i and l). Some visible
deviation from this pattern is in the affine volumetric strain and the affine rotation
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angle, whose temporal maximum values appear slightly below the shear zone, at the
third time step (Figures 3i and 3l).

Figure 4 shows the spatial maps of the same monitoring non-affine and affine
variables but for the perturbed run with AC vibration. Again, different rows refer to
different strain metrics while different columns refer to distinct time instants during
the corresponding slip period (see the symbols in Figure 2a). In the reference run,
both the affine and non-affine deformations are very small at the start of the slip
event. However, in the perturbed run, the deformations are much higher from the
very beginning of the slip event, Figures 4a, d, g and j. This is a direct consequence of
AC vibration and the corresponding elastic wave propagation across the granular
layer. Overall deformations of the granular layer are due to the superposition of the
deformations caused by the application of shearing and the deformations caused by
the imposed AC vibration. Higher levels of affine and non-affine deformations
directly imply larger probabilities of particle mobilization. Vibration therefore
increases particle mobilization and allows for the initiation and development of slip
at reduced shear stress levels.

The passage of the wavefronts due to AC vibration, moving from the lower
roughness layer up across the granular layer, is also clearly visible, especially in the
spatial map of the affine volumetric strain !(, Figures 4g, h and i. The volumetric
strain is indeed closely related with the compressional (P) elastic wavefield created by
the AC vibration displacement applied at the substrate bottom.

Regions of relatively high values (in the present scale) of M, &( and 'r are no
longer only localized at the interface with the upper roughness layer but they are
distributed across and along the whole granular layer.
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Figure 2. (a) Time series of the friction coefficient, !f, for the reference run (black line) and
for one perturbed run (grey line). The shaded area indicates the temporal interval of AC
vibration (I¼ [3.360; 3.460]). (b) Time history of the substrate’s bottom displacement imposed
in the Y-direction, uy, in order to apply vibration to the system. The time axis in this plot has
been aligned with the time axis of inset (a) for correspondence. The markers point to time
instants and !f values for which the spatial distribution of the non-affine deformation metric,
M, and of the affine metrics, are shown in Figures 3 and 4, for the reference and perturbed
runs, respectively.
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4.2. Temporal evolution of deformations

In this section we focus on the temporal evolution of the affine and non-affine
deformation metrics introduced in Section 3. The particle ensemble averages are used
for characterizing the granular layer deformation mode and for comparing it
with the state of the system during the stick–slip cycle, quantified by the !f signal.
Figures 5a and b show time series for several stick–slip cycle signals for the reference
and perturbed runs, respectively.

Figures 5a(1) and b(1) show the !f signals, highlighting a series of stick–slip
events. The ensemble average non-affine deformation metric, hMi, Figure 5a(2) for
the reference run, signals the onset of slip since it abruptly and steeply increases at
the start of the drop of !f. This abrupt increase happens for each slip event.
Figure 5a(2) shows just a short train of spikes in hMi but the pattern is exactly the
same for a long series of slip events. In general, hMi achieves its maximum value at
the end of the slip event, after which it slowly decays during the following stick
period. Figure 5a(2) indicates that rapid intervals of build-up followed by intervals of
slow decay for hMi are characteristic patterns of stick–slip dynamics.

The typical temporal evolution of the non-affine deformation is mirrored by the
particle ensemble average affine deviatoric strain, &(, as can be observed in
Figure 5a(3). The cross-covariance of hMi and h&(i indicates that they are almost
completely correlated (see Appendix B for details). This means that the elastic,
locally uniform shear deformations develop simultaneously with the irreversible,
highly inhomogeneous ones. The fact that both hMi and h&(i achieve their maximum
values simultaneously with the minimum value of !f, during the slip period, simply
signals the achievement of more degrees of freedom for the particles, corresponding
to contact force chain rearrangements.

The particle ensemble average affine volumetric strain, h !(i, Figure 5a(4), is a
measure of dilation/compaction. As reported at the beginning of this section, h !(i
strongly correlates with the perturbation due to the elastic wave propagation across
the granular layer during the application of AC vibration, which induces compres-
sional waves across the layer. Figure 5a(4) also shows that h !(i grows at the onset of
slip events but it does not exactly follow the same pattern as for hMi . For instance,
larger slip events, in terms of the drop in !f, do not necessarily result in higher peak
values of h !(i, while this is the case for hMi and h&(i . In addition, h !(i always fluctuates
about 0, assuming both positive and negative values, indicating that the system does
not undergo a considerable net elastic volume change. Observed macroscopic
dilation and compaction is therefore mainly due to the non-affine (inelastic)
deformations.

The particle ensemble average affine rotation angle, h'ri, is presented in
Figure 5a(5). It has a similar trend as for h !(i, building up during slip events and
decaying afterwards while always fluctuating about 0. However, we did not find
significant correlation between h'ri and h !(i.

Results for the same macroscopic signals but related with the perturbed run are
presented in Figures 5b(1)–b(5). The shaded area in these plots indicates the time
interval of applied AC vibration, I¼ [3.36; 3.46]. As a result of dynamic triggering,
the affine and non-affine deformations increase starting earlier in time. The temporal
behaviour of the average non-affine and affine deformations hMi, h&(i and h !(i for the
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AC triggered event is quite similar to the reference run, except that the cross-
covariance coefficient between hMi and h&(i is slightly lower during the interval of
applied vibration than for the reference run (see Appendix B for details). This is due
to the disturbance caused by the elastic wave propagation itself.

5. Conclusions

We have performed 2D Discrete Element Method (DEM) simulations of stick–slip
dynamics for a granular layer confined and sheared by thick, elastically deformable
blocks. We have run two types of simulations: in the absence (reference run) and in
the presence (perturbed run) of AC vibration imposed as a boundary condition at the
bottom of the substrate block. The model’s basic features are designed to mimic
some of the essential features of mature geologic faults containing fault gouge. The
AC vibration corresponds to the external perturbation of a fault by seismic waves
radiated by earthquakes from other faults in the Earth. Our intent is that this
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Figure 5. Time series for the reference run (a) and the perturbed run (b): (1) friction coefficient
(!f), (2) granular layer particle ensemble average of the non-affine deformation metric (hMi),
(3) ensemble average of affine deviatoric strain (h&(i), (4) ensemble average of affine
volumetric strain (h !(i) and finally (5) ensemble average of affine (mesoscopic) rotation angle
(h'ri). Black solid lines refer to the reference run whereas grey lines refer to the perturbed run
with I¼ [3.360; 3.460] as the AC vibration application interval. The shaded area in the
perturbed run plots, right column, insets (b), highlight the time interval I.
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simulation approach provides the means for investigating the granular dynamics
associated with dynamic earthquake triggering, i.e., the nucleation of earthquakes at
one fault by the waves emitted by other distant earthquakes. In this work, we have
focused on analysing the granular dynamics at a mesoscopic scale, i.e., at the scale of
clusters of 10–20 particles.

We have adopted two types of metrics for characterizing mesoscopic scale
deformations: the non-affine deformation metric measures the spatial inhomogeneity
of the mesoscopic strains, while the affine metrics quantify the spatially homoge-
neous mesoscopic strains. The mesoscopic scale non-affine deformation analysis of
the reference run simulations shows that slip events accomodate shear in zones
localized at the interface between the sheared granular layer and the shearing block.
This result is in agreement with the Shear Transformation Zone (STZ) theory [52,53]
and with the experimental evidence obtained with laboratory configurations
employing photoelastic beads [51]. Our analysis of affine deformations indicates
that shear localization of non-affine strain is simultaneously accompanied by affine
strains which correlate in time, providing more information about the dynamics
associated with granular stick–slip.

A critical question that still remains to be answered is which of the two types of
deformations contribute most to the stick–slip instability. The temporal analysis we
performed in this work just shows that there is a strong correlation between the two
types of average deformation signals but cannot underpin any leading role of one
deformation mechanism over the other. Correlation of the spatial distribution of
affine and non-affine strains will need to be investigated in future work in order to
address these open questions.

The affine and non-affine metrics for the perturbed runs show that AC vibration
acts as an additional source of both affine and non-affine deformations. The increase
in the levels of non-affine deformation, together with the localization of affine strains
during stick periods and when AC vibration is applied, could provide an explanation
for dynamic triggering: slip requires particle contact mobilization to occur and
higher levels of non-affine deformations undoubtedly augment the mobilization
likelihood. However, while these metrics provide spatial and temporal information
on mesoscopic deformations, we still do not have a clear picture of how slip events
initiate.

Beyond assessing the statistical stability of the affine and non-affine deformation
patterns when randomly changing the granular layer, we think that important future
investigations will have also to address their statistical stability when randomly
varying the driving block/substrate and how they are affected by changing their
geometrical and mechanical parameters. We believe that one relevant parameter will
be the ratio between the thickness of the granular layer and the thickness of the
driving block/substrate, given a certain AC vibration frequency and amplitude. The
thickness of the driving block/substrate directly affects its elastodynamic features,
thus the way the propagated elastic waves interact with the granular layer and
perturb the stick–slip dynamics.

Studies of granular stick–slip similar to this study may allow for future work to
provide a more quantitative connection between simulation, laboratory, and
observational data for earthquakes. DEM simulations provide a unique tool in
understanding earthquake dynamics due to access to particle scale deformations, and
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allow for analysis similar to our work here to better understand the physics of
earthquake initiation at the granular scale. Future work will address other ways to
bridge from simulations to observational data, including examining signatures such
as the statistical distribution of slip event sizes for real faults (i.e., the Gutenberg–
Richter law). Making such connections will provide a more robust way to link
simulations, experiments, and observations and allow scientists to gain a better
understanding of the physics controlling triggering of slip and failure in the Earth.
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Appendix A: Statistical robustness of the affine/non-affine deformation analysis

In order to assess the statistical robustness of the results obtained from the affine/non-affine
deformation analysis, we have performed 10 long reference runs, each containing about 900
slip events and each one differing from the others only for a distinct, random realization of the
granular layer particle assembly.

Figure A1 shows a temporal segment of the particle esemble average of the non-affine
deformation metric, hMi, for the granular layer, of three such runs. Distinct runs are
characterized by qualitatively similar stick–slip dynamics, in terms of both the friction
coefficient signal and of the affine/non-affine deformation ones. For brevity, we show here
only the non-affine one. The pattern is the same in each simulation. However, the timing for
the slip onset is different. From a statistical point of view, the 10 runs exhibit strong agreement
with each other. To prove that, we show in Figure A2 the complementary Cumulative
Distribution Function (cCDF) for the variable DhMi. A value of DhMi is calculated
corresponding to each slip event as the increase in hMi corresponding to the onset of slip (see
the vertical double arrow in Figure 6 for an example of the value of DhMi for one slip event
from one reference run). The series of slip events in each run contributes to the generation of
an ensemble of realizations for DhMi, thus treated as a random variable.
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Figure A2 shows that the fluctuations of DhMi due to the random realization of the
granular layer are very small, proving that the typical stick–slip pattern described in this article
is statistically stable.

Appendix B: Degree of synchronization among affine and non-affine deformations

We investigated the temporal relation between the development of the affine and the non-
affine deformation components. Two deformation signals were recorded in vectors

40.8 40.9 41 41.1 41.2 41.3
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<
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>
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Figure A1. Particle ensemble average of the non-affine deformation metricM for the granular
layer, obtained from three different reference runs (different colours). Each run differs from
the others only for a different random realization of the granular layer, given the same particle
size range. The three runs exhibit different stick–slip signals but with similar qualitative
features. The vertical double arrow indicates the increase in hMi corresponding to the onset of
one slip event, for one of the three reference runs. For each run, we measured such an increase,
called DhMi, corresponding to each slip event.
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Figure A2. Complementary Cumulative Distribution Function (cCDF) for DhMi. P(DhMii
DhM0i) is the probability that DhMi achieves a value greater than DhM0i, given the ensemble of
DhMi values obtained from the identification of the slip events in a reference run. The different
curves (different colours online) correspond to distinct reference runs, each run differing from
the others only by a distinct random realization of the granular layer. Ten such reference runs
were performed, each one containing approximately 900 slip events.
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X¼ (X1, . . . ,Xn) and Y¼ (Y1, . . . ,Yn), respectively. Xi,Yi, 8i¼ 1, . . . , n, are the values of the
two respective signals at different recording time steps. For measuring the temporal similarity
of the two signals we calculated their cross-covariance, defined as:

covðX,YÞ ¼ E
ðX' !XÞ
"X

" ðY' !YÞ
"Y

# &
: ðB1Þ

E["] is the expected value operator, !X and !Y are the mean values of X and Y, respectively,
and "X and "Y their respective standard deviations. This cross-covariance definition is such
that the corresponding auto-covariance, i.e., the cross-covariance of a signal with itself, at zero
time-lag, is equal to 1.0. The cross-covariance function cov(X, Y) was calculated using
different time-lags DT between the two signals, with D T¼' 0.009, '0.0085, . . . , 0.0085,
0.009. Corresponding to each time-lag value, the two signals were considered only within an
evaluation time interval with width equal to two times the average stick–slip event duration,
the average value calculated out of a long series of stick–slip events. The evaluation time
window’s centre was moved along the time axis within the interval [3.4, 4.0] in order to get the
temporal evolution of the cross-covariance function itself.

We report here only results about the degree of synchronization between the particle
ensemble average of the non-affine deformation, hMi, and the ensemble average of the affine
deviatoric strain, h&(i. In this case, X represents the time series of hMi while Y represents the
time series of h&(i. These two macroscopic signals are strongly correlated with each other and
with the stick–slip dynamics as can be seen in Figure B1. Insets (a) and (b) in Figure B1 show
stick–slip events, respectively, for the reference run and the perturbed run. The grey shaded
area in Figure B1(b) highlights the time period of AC vibration, I¼ [3.36;3.46], as in
Figures 2a and 5b(1)–b(5). Insets (c) and (d) in Figure B1 show the h&(i (left scale) and hMi
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Figure B1. Synchronization among the stick–slip dynamics, the particle ensemble average
non-affine deformation metric, hMi and the particle ensemble average affine deviatoric strain,
h&(i. Left column (insets (a) and (c)): reference run. Right column (insets (b) and (d): perturbed
run with AC vibration applied within the time interval I¼ [3.36;3.46] (grey shaded area). Top
row (insets (a) and (b)): friction coefficient signal. Bottom row (insets (c) and (d)): average
affine deviatoric strain (left scale), and average non-affine deformation metric (right scale).
h&(i and hMi are highly synchronized among each other at almost all times and they are
strongly correlated to the stick–slip dynamics in terms of the abrupt increase at the onset of
slip and slow decay during stick.
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(right scale) signals, respectively, for the reference run and the perturbed run. In both runs,
h&(i and hMi are highly synchronized, abruptly increasing corresponding to the slip event till
its end, when they achieve local maximum values. During the stick periods, both h&(i and hMi
decrease very slowly, approximately with the same decaying behaviour.

Both in the reference run and in the perturbed run, the zero-lag cross-covariance of h&(i
and hMi is equal to about 0.98 independently of the temporal location of the evaluation
window’s centre. This result confirms quantitatively the high degree of synchronization
between the two signals. The cross-covariance, as a function of time-lag, decreases with
different rates corresponding to different evaluation periods, due to the high-frequency
fluctuations in the h&(i and hMi signals themselves. These high-frequency fluctuations make it
difficult to estimate a temporal correlation length and compare it across different evaluation
periods.

20 M. Griffa et al.

D
ow

nl
oa

de
d 

by
 [L

ib
4R

I] 
at

 0
8:

15
 1

0 
Ju

ly
 2

01
2 


